Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Adv Appl Microbiol ; 126: 93-119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38637108

RESUMO

The early postnatal period represents a critical window of time for the establishment and maturation of the human gut microbiota. The gut microbiota undergoes dramatic developmental changes during the first year of life, being influenced by a variety of external factors, with diet being a major player. Indeed, the introduction of complementary feeding provides novel nutritive substrates and triggers a shift from milk-adapted gut microbiota toward an adult-like bacterial composition, which is characterized by an enhancement in diversity and proportions of fiber-degrading bacterial genera like Ruminococcus, Prevotella, Eubacterium, and Bacteroides genera. Inadequate gut microbiota development in early life is frequently associated with concomitant and future adverse health conditions. Thus, understanding the processes that govern initial colonization and establishment of microbes in the gastrointestinal tract is of great importance. This review summarizes the actual understanding of the assembly and development of the microbial community associated with the infant gut, emphasizing the importance of mother-to-infant vertical transmission events as a fundamental arrival route for the first colonizers.


Assuntos
Microbioma Gastrointestinal , Microbiota , Lactente , Feminino , Humanos , Trato Gastrointestinal/microbiologia , Mães , Dieta
2.
Environ Microbiol ; 26(4): e16626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646847

RESUMO

The bacterial genus Hafnia has recently attracted attention due to its complex metabolic features and host-interaction capabilities, which are associated with health benefits, primarily weight loss. However, significant gaps remain in our understanding of the genomic characteristics of this emerging microbial group. In this study, we utilized all available high-quality genomes of Hafnia alvei and Hafnia paralvei to uncover the broad distribution of Hafnia in human and honeybee guts, as well as in dairy products, by analysing 1068 metagenomic datasets. We then investigated the genetic traits related to Hafnia's production of vitamins and short-chain fatty acids (SCFAs) through a comparative genomics analysis that included all dominant bacterial species in the three environments under study. Our findings underscore the extensive metabolic capabilities of Hafnia, particularly in the production of vitamins such as thiamine (B1), nicotinate (B3), pyridoxine (B6), biotin (B7), folate (B9), cobalamin (B12), and menaquinone (K2). Additionally, Hafnia demonstrated a conserved genetic makeup associated with SCFA production, including acetate, propanoate, and butanoate. These metabolic traits were further confirmed using RNAseq analyses of a newly isolated H. paralvei strain T10. Overall, our study illuminates the ecological distribution and genetic attributes of this bacterial genus, which is of increasing scientific and industrial relevance.


Assuntos
Microbioma Gastrointestinal , Microbioma Gastrointestinal/genética , Humanos , Animais , Abelhas/microbiologia , Ácidos Graxos Voláteis/metabolismo , Genoma Bacteriano , Microbiologia de Alimentos , Metagenômica , Vitaminas/metabolismo , Filogenia
3.
Front Microbiol ; 15: 1349391, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426063

RESUMO

Members of the genus Bifidobacterium are among the first microorganisms colonizing the human gut. Among these species, strains of Bifidobacterium breve are known to be commonly transmitted from mother to her newborn, while this species has also been linked with activities supporting human wellbeing. In the current study, an in silico approach, guided by ecology- and phylogenome-based analyses, was employed to identify a representative strain of B. breve to be exploited as a novel health-promoting candidate. The selected strain, i.e., B. breve PRL2012, was found to well represent the genetic content and functional genomic features of the B. breve taxon. We evaluated the ability of PRL2012 to survive in the gastrointestinal tract and to interact with other human gut commensal microbes. When co-cultivated with various human gut commensals, B. breve PRL2012 revealed an enhancement of its metabolic activity coupled with the activation of cellular defense mechanisms to apparently improve its survivability in a simulated ecosystem resembling the human microbiome.

4.
mSystems ; 9(4): e0129423, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38441032

RESUMO

The human gut microbiota is a dynamic community of microorganisms that undergo variable changes over the entire life span. To thoroughly investigate the possible fluctuations of the microbiota throughout human life, we performed a pooled analysis of healthy fecal samples across different age groups covering the entire human life span. Our study integrated data from 79 publicly available studies and new stool samples from an Italian cohort, i.e., the Parma Microbiota project, resulting in 6,653 samples processed through the shotgun metagenomic approach. This approach has allowed species-level taxonomic reconstruction of the gut microbiota and investigation of its metabolic potential across the human life span. From a taxonomic point of view, our findings confirmed and detailed at species-level accuracy that the microbial richness of the gut microbiota gradually increases in the first stage of life, becoming relatively stable during adolescence. Moreover, the analysis identified the potential core microbiota representative of distinct age groups, revealing age-related bacterial patterns and the continuous rearrangement of the microbiota in terms of relative abundances across the life span rather than the acquisition and loss of taxa. Furthermore, the shotgun approach provided insights into the functional contribution of the human gut microbiome. The metagenomic analysis revealed functional age-related differences, particularly in carbohydrate and fiber metabolism, suggesting a co-evolution of the microbiome assembly with diet. Additionally, we identified correlations between vitamin synthesis, such as thiamine and niacin, and early life, suggesting a potential role of the microbiome in human physiology, in particular in the functions of the host's nervous and immune systems. IMPORTANCE: In this study, we provided comprehensive insights into the dynamic nature of the human gut microbiota across the human life span. In detail, we analyzed a large data set based on a shotgun metagenomic approach, combining public data sets and new samples from the Parma Microbiota project and obtaining a detailed overview of the possible relationship between gut microbiota development and aging. Our findings confirmed the main stages in microbial richness development and revealed specific core microbiota associated with different age stages. Moreover, the shotgun metagenomic approach allowed the disentangling of the functional changes in the microbiome across the human life span, particularly in diet-related metabolism, which is probably correlated to bacterial co-evolution with dietary habits. Notably, our study also uncovered positive correlations with vitamin synthesis in early life, suggesting a possible impact of the microbiota on human physiology.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Microbioma Gastrointestinal/genética , Metagenoma/genética , Bactérias/genética , Vitaminas
5.
Microbiome Res Rep ; 3(1): 4, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455080

RESUMO

Background: Recent advances in microbiome sequencing techniques have provided new insights into the role of the microbiome on human health with potential diagnostic implications. However, these developments are often hampered by the presence of a large amount of human DNA interfering with the analysis of the bacterial content. Nowadays, extensive scientific literature focuses on eukaryotic DNA depletion methods, which successfully remove host DNA in microbiome studies, even if a precise assessment of the impact on bacterial DNA is often missing. Methods: Here, we have investigated a saponin-based DNA isolation protocol commonly applied to different biological matrices to deplete the released host DNA. Results: The bacterial DNA obtained was used to assess the relative abundance of bacterial and human DNA, revealing that the inclusion of 2.5% wt/vol saponin allowed the depletion of most of the host's DNA in favor of bacterial DNA enrichment. However, shotgun metagenomic sequencing showed inaccurate microbial profiles of the DNA samples, highlighting an erroneous increase in Gram-positive DNA. Even the application of 0.0125% wt/vol saponin altered the bacterial profile by depleting Gram-negative bacteria, resulting in an overall increase of Gram-positive bacterial DNA. Conclusion: The application of the saponin-based protocol drastically changes the detection of the microbial composition of human-related biological specimens. In this context, we revealed that saponin targets not only host cells but also specific bacterial cells, thus inducing a drastic reduction in the profiling of Gram-negative bacterial DNA.

6.
Appl Environ Microbiol ; 90(3): e0215223, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38334291

RESUMO

The dairy fermentation industry relies on the activity of lactic acid bacteria in robust starter cultures to accomplish milk acidification. Maintenance of the composition of these starter cultures, whether defined or undefined, is essential to ensure consistent and high-quality fermentation end products. To date, limited information exists regarding the microbial composition of undefined starter culture systems. Here, we describe a culture-based analysis combined with a metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, we describe a qPCR-based genotype detection assay, which is capable of discerning nine distinct lactococcal genotypes to characterize these undefined starter cultures, and which can be applied to monitor compositional changes in an undefined starter culture during a fermentation. IMPORTANCE: This study reports on the development of a combined culture-based analysis and metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, a novel qPCR-based genotype detection assay, capable of discerning nine distinct lactococcal genotypes (based on lactococcal cell wall polysaccharide biosynthesis gene clusters), was used to monitor compositional changes in an undefined starter culture following phage attack. These analytical approaches facilitate a multifaceted assessment of starter culture compositional stability during milk fermentation, which has become an important QC aspect due to the increasing demand for consistent and high-quality dairy products.


Assuntos
Bacteriófagos , Lactobacillales , Lactococcus lactis , Animais , Lactococcus lactis/genética , Leite/microbiologia , Bacteriófagos/genética , Fermentação
7.
Appl Environ Microbiol ; 90(2): e0201423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38294252

RESUMO

Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.


Assuntos
Bifidobacterium adolescentis , Microbioma Gastrointestinal , Probióticos , Adulto , Humanos , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/metabolismo , Microbioma Gastrointestinal/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , Filogenia
8.
Microb Biotechnol ; 17(2): e14406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271233

RESUMO

Bifidobacteria are commensal microorganisms that typically inhabit the mammalian gut, including that of humans. As they may be vertically transmitted, they commonly colonize the human intestine from the very first day following birth and may persist until adulthood and old age, although generally at a reduced relative abundance and prevalence compared to infancy. The ability of bifidobacteria to persist in the human intestinal environment has been attributed to genes involved in adhesion to epithelial cells and the encoding of complex carbohydrate-degrading enzymes. Recently, a putative mucin-degrading glycosyl hydrolase belonging to the GH136 family and encoded by the perB gene has been implicated in gut persistence of certain bifidobacterial strains. In the current study, to better characterize the function of this gene, a comparative genomic analysis was performed, revealing the presence of perB homologues in just eight bifidobacterial species known to colonize the human gut, including Bifidobacterium bifidum and Bifidobacterium longum subsp. longum strains, or in non-human primates. Mucin-mediated growth and adhesion to human intestinal cells, in addition to a rodent model colonization assay, were performed using B. bifidum PRL2010 as a perB prototype and its isogenic perB-insertion mutant. These results demonstrate that perB inactivation reduces the ability of B. bifidum PRL2010 to grow on and adhere to mucin, as well as to persist in the rodent gut niche. These results corroborate the notion that the perB gene is one of the genetic determinants involved in the persistence of B. bifidum PRL2010 in the human gut.


Assuntos
Bifidobacterium bifidum , Animais , Bifidobacterium bifidum/genética , Bifidobacterium/genética , Células Epiteliais/microbiologia , Mucinas , Mamíferos
9.
Microbiome Res Rep ; 2(2): 15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058405

RESUMO

The reconstruction of microbial genome sequences by bioinformatic pipelines and the consequent functional annotation of their genes' repertoire are fundamental activities aiming at unveiling their biological mechanisms, such as metabolism, virulence factors, and antimicrobial resistances. Here, we describe the development of the MEGAnnotator2 pipeline able to manage all next-generation sequencing methodologies producing short- and long-read DNA sequences. Starting from raw sequencing data, the updated pipeline can manage multiple analyses leading to the assembly of high-quality genome sequences and the functional classification of their genetic repertoire, providing the user with a useful report constituting features and statistics related to the microbial genome. The updated pipeline is fully automated from the installation to the delivery of the output, thus requiring minimal bioinformatics knowledge to be executed.

10.
Microbiome Res Rep ; 2(3): 23, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046821

RESUMO

Background: At birth, the human intestine is colonized by a complex community of microorganisms known as gut microbiota. These complex microbial communities that inhabit the gut microbiota are thought to play a key role in maintaining host physiological homeostasis. For this reason, correct colonization of the gastrointestinal tract in the early stages of life could be fundamental for human health. Furthermore, alterations of the infant microbiota are correlated with the development of human inflammatory diseases and disorders. In this context, the possible relationships between intestinal microbiota and body composition during infancy are of great interest. Methods: In this study, we have performed a pilot study based on 16S rRNA gene profiling and metagenomic approaches on repeatedly measured data on time involving a cohort of 41 Italian newborns, which is aimed to investigate the possible correlation between body fat mass percentage (FM%) and the infant gut microbiota composition. Results and conclusion: The taxonomical analysis of the stool microbiota of each infant included in the cohort allowed the identification of a specific correlation between intestinal bacteria, such as Bifidobacterium and Veillonella, and the increase in FM%. Moreover, the analysis of the infant microbiome's metabolic capabilities suggested that the intestinal microbiome functionally impacts the human host and its possible influence on host physiology.

11.
Microbiol Spectr ; : e0219423, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37728335

RESUMO

The human organism is inhabited by trillions of microorganisms, known as microbiota, which are considered to exploit a pivotal role in the regulation of host health and immunity. Recent investigations have suggested a relationship between the composition of the human microbiota and COVID-19 infection, highlighting a possible role of bacterial communities in the modulation of the disease severity. In this study, we performed a shotgun metagenomics analysis to explore and compare the nasopharyngeal microbiota of 38 hospitalized Italian patients with and without COVID-19 infection during the third and fourth pandemic waves. In detail, the metagenomic analysis combined with specific correlation analyses suggested a positive association of several microbial species, such as S. parasanguinis and P. melaninogenica, with the severity of COVID-19 infection. Furthermore, the comparison of the microbiota composition between the nasopharyngeal and their respective fecal samples highlighted an association between these different compartments represented by a sharing of several bacterial species. Additionally, lipidomic and deep-shotgun functional analyses of the fecal samples suggested a metabolic impact of the microbiome on the host's immune response, indicating the presence of key metabolic compounds in COVID-19 patients, such as lipid oxidation end products, potentially related to the inflammatory state. Conversely, the patients without COVID-19 displayed enzymatic patterns associated with the biosynthesis and degradation of specific compounds like lysine (synthesis) and phenylalanine (degradation) that could positively impact disease severity and contribute to modulating COVID-19 infection. IMPORTANCE The human microbiota is reported to play a major role in the regulation of host health and immunity, suggesting a possible impact on the severity of COVID-19 disease. This preliminary study investigated the possible correlation between nasopharyngeal microbiota and COVID-19 infection. In detail, the analysis of the nasopharyngeal microbiota of hospitalized Italian patients with and without COVID-19 infection suggested a positive association of several microbial species with the severity of the disease and highlighted a sharing of several bacteria species with the respective fecal samples. Moreover, the metabolic analyses suggested a possible impact of the microbiome on the host's immune response and the disease severity.

12.
Nat Commun ; 14(1): 4220, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452041

RESUMO

Although compositional variation in the gut microbiome during human development has been extensively investigated, strain-resolved dynamic changes remain to be fully uncovered. In the current study, shotgun metagenomic sequencing data of 12,415 fecal microbiomes from healthy individuals are employed for strain-level tracking of gut microbiota members to elucidate its evolving biodiversity across the human life span. This detailed longitudinal meta-analysis reveals host sex-related persistence of strains belonging to common, maternally-inherited species, such as Bifidobacterium bifidum and Bifidobacterium longum subsp. longum. Comparative genome analyses, coupled with experiments including intimate interaction between microbes and human intestinal cells, show that specific bacterial glycosyl hydrolases related to host-glycan metabolism may contribute to more efficient colonization in females compared to males. These findings point to an intriguing ancient sex-specific host-microbe coevolution driving the selective persistence in women of key microbial taxa that may be vertically passed on to the next generation.


Assuntos
Microbioma Gastrointestinal , Microbiota , Masculino , Humanos , Feminino , Microbioma Gastrointestinal/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , Bactérias/genética
13.
Microb Biotechnol ; 16(9): 1774-1789, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37491806

RESUMO

The lower female reproductive tract is notoriously dominated by Lactobacillus species, among which Lactobacillus crispatus emerges for its protective and health-promoting activities. Although previous comparative genome analyses highlighted genetic and phenotypic diversity within the L. crispatus species, most studies have focused on the presence/absence of accessory genes. Here, we investigated the variation at the single nucleotide level within protein-encoding genes shared across a human-derived L. crispatus strain selection, which includes 200 currently available human-derived L. crispatus genomes as well as 41 chromosome sequences of such taxon that have been decoded in the framework of this study. Such data clearly pointed out the presence of intra-species micro-diversities that could have evolutionary significance contributing to phenotypical diversification by affecting protein domains. Specifically, two single nucleotide variations in the type II pullulanase gene sequence led to specific amino acid substitutions, possibly explaining the substantial differences in the growth performances and competition abilities observed in a multi-strain bioreactor culture simulating the vaginal environment. Accordingly, L. crispatus strains display different growth performances, suggesting that the colonisation and stable persistence in the female reproductive tract between the members of this taxon is highly variable.


Assuntos
Lactobacillus crispatus , Vagina , Lactobacillus crispatus/classificação , Lactobacillus crispatus/genética , Lactobacillus crispatus/crescimento & desenvolvimento , Lactobacillus crispatus/metabolismo , Genoma Bacteriano , Evolução Molecular , Vagina/química , Vagina/microbiologia , Humanos , Feminino , Lactobacillus/classificação , Lactobacillus/genética , Metabolismo dos Carboidratos
14.
NPJ Biofilms Microbiomes ; 9(1): 25, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169786

RESUMO

During infancy, gut microbiota development is a crucial process involved in the establishment of microbe-host interactions which may persist throughout adulthood, and which are believed to influence host health. To fully understand the complexities of such interactions, it is essential to assess gut microbiota diversity of newborns and its associated microbial dynamics and relationships pertaining to health and disease. To explore microbial biodiversity during the first 3 years of human life, 10,935 shotgun metagenomic datasets were taxonomically and functionally classified. Microbial species distribution between infants revealed the presence of eight major Infant Community State Types (ICSTs), being dominated by 17 bacterial taxa, whose distribution was shown to correspond to the geographical origin and infant health status. In total, 2390 chromosomal sequences of the predominant taxa were reconstructed from metagenomic data and used in combination with 44,987 publicly available genomes to trace the distribution of microbial Population Subspecies (PS) within the different infant groups, revealing patterns of multistrain coexistence among ICSTs. Finally, implementation of a metagenomic- and metatranscriptomic-based metabolic profiling highlighted different enzymatic expression patterns of the gut microbiota that allowed us to acquire insights into mechanistic aspects of health-gut microbiota interplay in newborns. Comparison between metagenomic and metatranscriptomic data highlights how a complex environment like the human gut must be investigated by employing both sequencing methodologies and possibly supplemented with metabolomics approaches. While metagenomic analyses are very useful for microbial classification aimed at unveiling key players driving microbiota balances, using these data to explain functionalities of the microbiota is not always warranted.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Lactente , Recém-Nascido , Adulto , Bactérias/genética , Metagenoma , Biodiversidade
15.
Microbiol Spectr ; 11(3): e0066523, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37191543

RESUMO

Multiple millennia of human evolution have shaped the chemical composition of breast milk toward an optimal human body fluid for nutrition and protection and for shaping the early gut microbiota of newborns. This biological fluid is composed of water, lipids, simple and complex carbohydrates, proteins, immunoglobulins, and hormones. Potential interactions between hormones present in mother's milk and the microbial community of the newborn are a very fascinating yet unexplored topic. In this context, insulin, in addition to being one of the most prevalent hormones in breast milk, is also involved in a metabolic disease that affects many pregnant women, i.e., gestational diabetes mellitus (GDM). Analysis of 3,620 publicly available metagenomic data sets revealed that the bifidobacterial community varies in relation to the different concentrations of this hormone in breast milk of healthy and diabetic mothers. Starting from this assumption, in this study, we explored possible molecular interactions between this hormone and bifidobacterial strains that represent bifidobacterial species commonly occurring in the infant gut using 'omics' approaches. Our findings revealed that insulin modulates the bifidobacterial community by apparently improving the persistence of the Bifidobacterium bifidum taxon in the infant gut environment compared to other typical infant-associated bifidobacterial species. IMPORTANCE Breast milk is a key factor in modulating the infant's intestinal microbiota composition. Even though the interaction between human milk sugars and bifidobacteria has been extensively studied, there are other bioactive compounds in human milk that may influence the gut microbiota, such as hormones. In this article, the molecular interaction of the human milk hormone insulin and the bifidobacterial communities colonizing the human gut in the early stages of life has been explored. This molecular cross talk was assessed using an in vitro gut microbiota model and then analyzed by various omics approaches, allowing the identification of genes associated with bacterial cell adaptation/colonization in the human intestine. Our findings provide insights into the manner by which assembly of the early gut microbiota may be regulated by host factors such as hormones carried by human milk.


Assuntos
Microbioma Gastrointestinal , Microbiota , Lactente , Humanos , Recém-Nascido , Feminino , Gravidez , Leite Humano/metabolismo , Leite Humano/microbiologia , Bifidobacterium/genética , Bifidobacterium/metabolismo , Insulina/metabolismo , Fezes/microbiologia
16.
Microbiome ; 11(1): 27, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36782241

RESUMO

BACKGROUND: The correlation between the physical performance of athletes and their gut microbiota has become of growing interest in the past years, since new evidences have emerged regarding the importance of the gut microbiota as a main driver of the health status of athletes. In addition, it has been postulated that the metabolic activity of the microbial population harbored by the large intestine of athletes might influence their physical performances. Here, we analyzed 418 publicly available shotgun metagenomics datasets obtained from fecal samples of healthy athletes and healthy sedentary adults. RESULTS: This study evidenced how agonistic physical activity and related lifestyle can be associated with the modulation of the gut microbiota composition, inducing modifications of the taxonomic profiles with an enhancement of gut microbes able to produce short-fatty acid (SCFAs). In addition, our analyses revealed a correlation between specific bacterial species and high impact biological synthases (HIBSs) responsible for the generation of a range of microbially driven compounds such vitamin B12, amino acidic derivatives, and other molecules linked to cardiovascular and age-related health-risk reduction. CONCLUSIONS: Notably, our findings show how subsist an association between competitive athletes, and modulation of the gut microbiota, and how this modulation is reflected in the potential production of microbial metabolites that can lead to beneficial effects on human physical performance and health conditions. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Microbiota , Adulto , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Bactérias/genética , Atletas , Fezes/microbiologia , Metagenômica
17.
Front Microbiol ; 14: 1130592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846784

RESUMO

Bifidobacteria are extensively exploited for the formulation of probiotic food supplements due to their claimed ability to exert health-beneficial effects upon their host. However, most commercialized probiotics are tested and selected for their safety features rather than for their effective abilities to interact with the host and/or other intestinal microbial players. In this study, we applied an ecological and phylogenomic-driven selection to identify novel B. longum subsp. longum strains with a presumed high fitness in the human gut. Such analyses allowed the identification of a prototype microorganism to investigate the genetic traits encompassed by the autochthonous bifidobacterial human gut communities. B. longum subsp. longum PRL2022 was selected due to its close genomic relationship with the calculated model representative of the adult human-gut associated B. longum subsp. longum taxon. The interactomic features of PRL2022 with the human host as well as with key representative intestinal microbial members were assayed using in vitro models, revealing how this bifidobacterial gut strain is able to establish extensive cross-talk with both the host and other microbial residents of the human intestine.

18.
mSystems ; 8(1): e0106822, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36688869

RESUMO

Raw milk cheese manufactory is strictly regulated in Europe by the Protected Designation of Origin (PDO) quality scheme, which protects indigenous food products based on geographical and biotechnological features. This study encompassed the collection of 128 raw milk cheese samples across Italy to investigate the resident microbiome correlated to current PDO specifications. Shotgun metagenomic approaches highlighted how the microbial communities are primarily linked to each cheesemaking site and consequently to the use of site-specific Natural Whey Cultures (NWCs), defined by a multifactorial set of local environmental factors rather than solely by cheese type or geographical origin that guide the current PDO specification. Moreover, in-depth functional characterization of Cheese Community State Types (CCSTs) and comparative genomics efforts, including metagenomically assembled genomes (MAGs) of the dominant microbial taxa, revealed NWCs-related unique enzymatic profiles impacting the organoleptic features of the produced cheeses and availability of bioactive compounds to consumers, with putative health implications. Thus, these results highlighted the need for a profound rethinking of the current PDO designation with a focus on the production site-specific microbial metabolism to understand and guarantee the organoleptic features of the final product recognized as PDO. IMPORTANCE The Protected Designation of Origin (PDO) guarantees the traceability of food production processes, and that the production takes place in a well-defined restricted geographical area. Nevertheless, the organoleptic qualities of the same dairy products, i.e., cheeses under the same PDO denomination, differ between manufacturers. The final product's flavor and qualitative aspects can be related to the resident microbial population, not considered by the PDO denomination. Here, we analyzed a complete set of different Italian cheeses produced from raw milk through shotgun sequencing in order to study the variability of the different microbial profiles resident in Italian PDO cheeses. Furthermore, an in-depth functional analysis, along with a comparative genomic analysis, was performed in order to correlate the taxonomic information with the organoleptic properties of the final product. This analysis made it possible to highlight how the PDO denomination should be revisited to understand the effect that Natural Whey Cultures (NWCs), used in the traditional production of raw milk cheese and unique to each manufacturer, impacts on the organoleptic features of the final product.


Assuntos
Queijo , Microbiota , Animais , Queijo/análise , Leite/química , Microbiota/genética , Manipulação de Alimentos/métodos , Proteínas do Soro do Leite/análise , Itália
19.
NPJ Biofilms Microbiomes ; 8(1): 88, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316342

RESUMO

In vitro gut cultivation models provide host-uncoupled, fast, and cost-efficient solutions to investigate the effects of intrinsic and extrinsic factors impacting on both composition and functionality of the intestinal microbial ecosystem. However, to ensure the maintenance and survival of gut microbial players and preserve their functions, these systems require close monitoring of several variables, including oxygen concentration, pH, and temperature, as well as the use of a culture medium satisfying the microbial nutritional requirements. In this context, in order to identify the macro- and micro-nutrients necessary for in vitro cultivation of the infant gut microbiota, a meta-analysis based on 1669 publicly available shotgun metagenomic samples corresponding to fecal samples of healthy, full-term infants aged from a few days to three years was performed to define the predominant species characterizing the "infant-like" gut microbial ecosystem. A subsequent comparison of growth performances was made using infant fecal samples that contained the most abundant bacterial taxa of the infant gut microbiota, when cultivated on 18 different culture media. This growth analysis was performed by means of flow cytometry-based bacterial cell enumeration and shallow shotgun sequencing, which allowed the formulation of an optimized growth medium, i.e., Infant Gut Super Medium (IGSM), which maintains and sustains the infant gut microbial biodiversity under in vitro growth conditions. Furthermore, this formulation was used to evaluate the in vitro effect of two drugs commonly used in pediatrics, i.e., acetaminophen and simethicone, on the taxonomic composition of the infant gut microbiota.


Assuntos
Microbioma Gastrointestinal , Humanos , Lactente , Criança , Ecossistema , Bactérias/genética , Biodiversidade , Metagenômica
20.
Environ Microbiol ; 24(12): 5825-5839, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36123315

RESUMO

The genomic era has resulted in the generation of a massive amount of genetic data concerning the genomic diversity of bacterial taxa. As a result, the microbiological community is increasingly looking for ways to define reference bacterial strains to perform experiments that are representative of the entire bacterial species. Despite this, there is currently no established approach allowing a reliable identification of reference strains based on a comprehensive genomic, ecological, and functional context. In the current study, we developed a comprehensive multi-omics approach that will allow the identification of the optimal reference strains using the Bifidobacterium genus as test case. Strain tracking analysis based on 1664 shotgun metagenomics datasets of healthy infant faecal samples were employed to identify bifidobacterial strains suitable for in silico and in vitro analyses. Subsequently, an ad hoc bioinformatic tool was developed to screen local strain collections for the most suitable species-representative strain alternative. The here presented approach was validated using in vitro trials followed by metagenomics and metatranscriptomics analyses. Altogether, these results demonstrated the validity of the proposed model for reference strain selection, thus allowing improved in silico and in vitro investigations both in terms of cross-laboratory reproducibility and relevance of research findings.


Assuntos
Bifidobacterium , Multiômica , Humanos , Lactente , Bifidobacterium/genética , Reprodutibilidade dos Testes , Fezes/microbiologia , Metagenômica , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...